【摘要】:In this paper, the authors propose a novel smoothing descent type algorithm with extrapolation for solving a class of constrained nonsmooth and nonconvex problems,where the nonconvex term is possibly nonsmooth. Their algorithm adopts the proximal gradient algorithm with extrapolation and a safe-guarding policy to minimize the smoothed objective function for better practical and theoretical performance. Moreover, the algorithm uses a easily checking rule to update the smoothing parameter to ensure that any accumulation point of the generated sequence is an(afne-scaled) Clarke stationary point of the original nonsmooth and nonconvex problem. Their experimental results indicate the effectiveness of the proposed algorithm.